Upper bounds for the Steklov eigenvalues on trees

نویسندگان

چکیده

In this paper, we study the upper bounds for discrete Steklov eigenvalues on trees via geometric quantities. For a finite tree, prove sharp first nonzero eigenvalue by reciprocal of size boundary and diameter respectively. We also similar estimates higher order eigenvalues.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper Bounds for the Eigenvalues Ofdifferential Equations

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

متن کامل

On Principal Eigenvalues for Periodic Parabolic Steklov Problems

LetΩ be aC2+γ domain in RN ,N ≥ 2, 0 < γ < 1. LetT>0 and let L be a uniformly parabolic operator Lu= ∂u/∂t−∑i, j(∂/∂xi)(ai j(∂u/∂xj)) +∑ j b j(∂u/∂xi) + a0u, a0 ≥ 0, whose coefficients, depending on (x, t) ∈Ω×R, are T periodic in t and satisfy some regularity assumptions. Let A be the N ×N matrix whose i, j entry is ai j and let ν be the unit exterior normal to ∂Ω. Let m be a T-periodic functio...

متن کامل

Sharp upper bounds for the Laplacian graph eigenvalues

Let G = (V ,E) be a simple connected graph and λ1(G) be the largest Laplacian eigenvalue of G. In this paper, we prove that: 1. λ1(G) = max{du +mu : u ∈ V } if and only if G is a regular bipartite or a semiregular bipartite graph, where du and mu denote the degree of u and the average of the degrees of the vertices adjacent to u, respectively. 2. λ1(G) = 2 + √ (r − 2)(s − 2) if and only if G is...

متن کامل

Schrödinger upper bounds to semirelativistic eigenvalues

Problems posed by semirelativistic Hamiltonians of the form H = √ m2 + p2+V (r) are studied. It is shown that energy upper bounds can be constructed in terms of certain related Schrödinger operators; these bounds include free parameters which can be chosen optimally.

متن کامل

Upper Bounds on the Radio Number of Some Trees

Abstract: Let G be a simple,connected and undirected graph with diameter d. For a positive integer k (≤ d), a radio k-labeling f of G is an assignment of non-negative integers, called labels to the vertices of G such that if u, v ∈ V (G) are distinct then d(u, v) + |f(u) − f(v)| ≥ k + 1 where d(u, v) is the distance between u and v. The maximum label (positive integer) assigned by f to some ver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Calculus of Variations and Partial Differential Equations

سال: 2022

ISSN: ['0944-2669', '1432-0835']

DOI: https://doi.org/10.1007/s00526-022-02207-6